PROTECTING CULTURAL HERITAGE FROM WILDFIRES A NEURAL NETWORK APPROACH

Georgios Leventis¹

¹Cyprus University of Technology, CY 3036, Limassol, Cyprus georgios.leventis@cut.ac.cy

Introduction

The majority of cultural assets and archaeological sites are located in open sunlit regions that due to the large space occupied, are often left **unprotected** from natural hazards such as wildfires. Cyprus University of Technology Digital Heritage Research Lab

A Radial Basis Function Neural Network (RBFNN) was developed in order to **predict** the appearance of small fires in places of cultural significance.

The proposed network has been tested on the dataset found in UCI Machine Learning Repository for Montesinho Natural Park; a **NATURA** region of Portugal.

Towards the end of protecting Heritage, Data Mining methods can be used to extract information from a dataset and transform it into an understandable structure, which can **contribute** in the protection of Cultural

Wildfires

Heritage sites.

Wildfires usually evolve from small outbreaks of fire therefore, in cases where there is an efficient amount of "fuel" (e.g. pine needles, rubbish etc.) in the nearby area, forest fires spread rapidly, burning can everything that stands in their way. Although, sometimes this may benefit the renewal of biodiversity, usually it negative impact, Causes a exacerbating related other environmental problems.

Dataset contained 517 entries (e.g. fire indexes, temperature, moisture, wind etc.), which were being processed in the hidden layer of the network in order to estimate the burned area (output).

put Layer Hidden Output Layer Layer

10 Cross Fold Validation RMSE average values for the training data

С	4	6	8	10	11
Proposed	60.9617±6	59.5916±6	58.5194±6	57.3402±	56.2320±
Network	3.96165	2.57246	3.59162	58.5264	63.99232
RBFN1	62.8853±6	60.1488±6	59.6471±6	58.5984±	57.5549±
	2.88525	2.7569	2.64714	62.55486	61.44886
RBFN2	62.8523±6	60.0430±6	59.3951±6	58.4039±	57.2564±
	2.85226	2.2538	2.39507	62.2564	62.8437
RBFN3	62.8952±6	60.1154±6	59.6154±6	58.5360±	57.4747±
	2.8965	1.7891	0.1123	61.2056	62.4491
RBFN4	62.8949±6	60.1101±6	59.6148±6	58.5401±	57.4735±
	3.2489	2.1781	2.5715	61.8523	62.9862

- The data was split into 60% training data and 40% test data.
- The RBFNN was compared to 4

•

FUEL

The Fire Triangle

10 Cross Fold Validation RMSE average values for the test data

С	4	6	8	10	11
Proposed	38.5473±38.	38.2454±	37.2252±	36.2342±	36.1092±
Network	04731	38.51254	38.24935	38.34585	38.64894
RBFN1	42.2604±42.	41.6319±	40.9278±	40.1166±	39.2218±
	26043	42.63194	42.92776	43.22181	42.97561
RBFN2	42.7959±42.	41.9321±	40.8836±	40.3393±	39.9573±
	79587	41.85741	44.88364	44.95731	45,02591
RBFN3	42.2705±43.	41.5502±	40.3675±	39.5308±	38.5913±
	12594	43.14681	42.02462	42.41681	41.10369
RBFN4	42.2967±42.	41.6643±	40.1673±	39.5378±	38.7791±
	35791	43.47123	42.1289	41.93145	41.25481

others, where it yielded better results (lower values of the RMSE confirm both its accuracy and validity).

Achievement of an efficient fire management algorithmic system for areas of important cultural significance.

ITN From 60

ITNC-DCH (http://www.itn-dch.eu/) project has received funding from the European Union's Seventh Framework program for research, technological development and demonstration under GA no 608013.

The author would like also to thank Dr. Marinos Ioannides, Digital Heritage Research Lab, his former professors at the Dept. of Cultural Communication & Technology (University of Aegean) Dr. George Tsekouras and Dr. Antonios Neiros as well as his family and Anastasia for all the help and support received throughout his research activities.

Cyprus University of Technology Department of Electrical

Laboratory

Limassol, CYPRUS

(+357) 25 002020

Engineering, Computer

Engineering and Informatics

Arch. Kyprianou 31, CY 3036

Digital Heritage Research

Digital Heritage

Research Lab